When you think of a machine learning algorithm, the first metric that comes to mind is its accuracy. A lot of research is centered on developing algorithms that are accurate and can predict the outcome with a high degree of confidence. During the training process, an important issue to think about is the stability of the learning algorithm. This allows us to understand how a particular model is going to turn out. We need to make sure that it generalizes well to various training sets. Estimating the stability becomes crucial in these situations. So what exactly is stability? How do we estimate it? Continue reading

# Measuring the Stability of Machine Learning Algorithms

3