Quantum Encryption And Black Holes – Part 1/2

1 mainIs that really the title? It looks like two random things mashed up together. Doesn’t make much sense, right? Well, recent research suggests that quantum encryption and black holes may be related. A proposed mathematical proof outlines the way in which information behaves in coded messages, and this may have implications for black holes. The proof basically suggests that the radiation spit out by black holes may retain information about them. The research not only focuses on encoding communications in quantum mechanical systems, but also addresses a long-standing question for theoretical physicists: What exactly happens to all the stuff that falls into a black hole? Is it possible to retrieve any information about the black hole?   Continue reading

Image Steganography

mainAs discussed in my previous post, steganography is the art of hiding the fact that communication is taking place. We achieve this by hiding original information inside other information known as carrier files. Many different carrier file formats can be used, but digital images are the most popular because of their frequency of occurrence on the internet. For hiding secret information in images, there exists a large variety of steganographic techniques, some are more complex than others, and all of them have respective strong and weak points. Different applications have different requirements of the steganography technique used. For example, some applications may require absolute invisibility of the secret information, while others require a larger secret message to be hidden. How do we achieve this? How robust is it?   Continue reading

Steganography

mainLet’s say that we want to communicate with someone secretly. We prefer that only the intended recipient have the ability to decode the contents of the communication. We obviously want to keep the message secret. Sounds familiar? A common solution to this problem is to use encryption. An encryption scheme takes a message and transforms it into an unreadable format so that an eavesdropper can’t read it. Now what if we don’t want anyone to find out that there is communication going on? As in, if the attackers don’t know that something is going on, then there are lesser chances of getting attacked right? How do we achieve this? Are there techniques to that allow us the hide this information?   Continue reading

P vs NP: The Epic Saga

P vs NPP vs NP problem is one of the great unsolved problems in theoretical computer science. This problem has become broadly recognized in the mathematical community as a mathematical question because it is fundamental, important and beautiful. It is in fact one of the seven Millennium Prize Problems. If you solve this problem, you get $1 million and become really famous among mathematicians and computer scientists. If you are evil, then you can use your proof to become richer than God, then publish your proof, reject the prize money and become extremely well respected in the mathematics community! Wait a minute, really? How can I use this to become rich? Before we answer that, let’s see what exactly is the difficulty in solving the problem. Shall we?   Continue reading

Reimann Hypothesis And Its Connection To Cryptography

Over the centuries, mathematicians have been involved in solving some of most complex problems. But what is the motivation behind that? The pursuit of truth! But The Clay Mathematics Institute thought that there should be a little more than that. So to celebrate mathematics in the new millennium, they established seven Millennium Prize Problems. The prize money for each problem is one million dollars. That’s pretty exciting! These were some of the most difficult problems over which many mathematicians were racking their brains. Reimann Hypothesis is one of them. The interesting thing about this particular problem is that it has far reaching consequences in the field of modern cryptography and internet security. Now how can an obscure and complex mathematical problem affect cryptography and internet security?   Continue reading

Decrypting Cryptography

What’s the first thing that came to your mind when you read the title? How do you perceive the term ‘cryptography’? It has something to do with secrecy and hiding right! Anyway, cryptography is the art of protecting information by transforming it into an unreadable format. Only the people who have the secret key can decode this message. The process of transforming the information into something unreadable is called Encryption and the reverse process is called Decryption. Let’s say you have a message you want to send to your friend. The message to be encoded is called plaintext and the encrypted message is called ciphertext. The goal here is to find the most secure way of transforming the plaintext into ciphertext. How do we encrypt it? How do we make sure it remains safe even if someone happens to see it?   Continue reading